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Disclaimer

Note:

Opinions expressed in this presentation are the 
author’s own, 

and do not represent an official position of NASA.
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Introduction

• Why Capillary Two-Phase Devices? 
– Two-phase capillary devices can transfer large heat loads over long 

distances with small temperature differences.

• Existing Capillary Two-Phase Devices
– Heat Pipe
– Capillary Pumped Loop
– Loop Heat Pipe
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Schematic of a Heat Pipe

Evaporator

Heat Output

Condenser

Heat Input Wick

Vapor Flow

Liquid Return
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Operating Principles of 
Capillary Two-Phase Devices

• Waste heat is absorbed by the working fluid through evaporation,
transported to the heat sink, and dissipated through condensation.

• The capillary force developed at the liquid and vapor interface in the fine 
porous wick circulates the fluid.
– The waste heat serves as the ultimate driving force.

• The capillary pressure will self adjust so that it is equal to the total 
pressure drop in the loop at all times.

• When the total pressure drop is equal to the maximum capillary pressure 
that the wick can sustain, the maximum heat transport capability is 
reached.  

Evaporator

Heat Output

Condenser

Heat Input Wick

Vapor Flow

Liquid Return
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Pressure Balance 
in Capillary Two-Phase Devices

• As the liquid is vaporizing, a meniscus is formed at the 
liquid/vapor interface in the wick, and a capillary pressure 
is developed across the meniscus.

• The total pressure drop is the sum of pressure drops in 
various components.

• The meniscus will curve naturally so the the capillary 
pressure is equal to the total pressure drop.

• The maximum capillary pressure that the wick can develop 
can be expressed as

∆∆∆∆Pcap = 2σσσσ cosθθθθ/R

∆∆∆∆Ptot = ∆∆∆∆Pevap + ∆∆∆∆Pvap+ ∆∆∆∆Pcond + ∆∆∆∆Pliq + ∆∆∆∆Pg

∆∆∆∆Pcap = ∆∆∆∆Ptot

RR

��

RRPP
��

∆∆∆∆Pcap,max = 2σσσσ cosθθθθ/Rp

R ≥≥≥≥ Rp
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Heat Pipes
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Functional Types Of Heat Pipes

• Three Basic Functional Types
– Constant Conductance Heat Pipe (CCHP)
– Variable  Conductance Heat Pipe  (VCHP)
– Diode Heat Pipe

• Many Hardware Variations Exist.
– Diameter
– Length
– Shape
– Wick Material
– Wick Construction
– Working Fluid

Evaporator

Heat Output

Condenser

Heat Input Wick

Vapor Flow

Liquid Return
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Some Wicks Used in Heat Pipes 

CIRCUMFERENTIAL
SCREEN WICK

SLAB WICK

AXIAL GROOVESPOWDER METAL WITH
PEDESTAL ARTERY
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Energy Balance in Heat Pipe

QIN = QOUT = m λ
.

Le = Evaporator length
La = Adiabatic length
Lc = Condenser length
m = Mass flow rate (liquid or vapor)
λ = Latent heat of vaporization

.

Liquid Flow

Vapor Flow

Condensation

Wick Structure

Evaporization

Container Wall QOUTQIN

TS

Le La Lc

QIN
QOUT
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Constant Conductance Heat Pipe

Liquid Flow

Vapor Flow

Condensation

Wick Structure

Evaporization

Container Wall
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Lc = Constant
T varies with  Ts and/or Q 
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Q = h(ππππDLc)(TV -Ts)
Lc varies with Ts and/or Q
so as to keep TV constant

Thermal Characteristics of a VCHP

Temperature
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Heat Input Heat Output
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Gas Reservoir
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Vapor Flow
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Adiabatic 
Section

Condenser
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Diode Heat Pipes

Q Q

Excess 
Liquid

QQ
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Pressure Drop Diagram of a Heat Pipe

• Heat Transport Limit

(QL)max = QLeff

Leff = 0.5 Le + La + 0.5 Lc

(QL)mx in Watt-Inches 
or Watt-Meters

Liquid
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Drop
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b) Vapor and liquid pressure distributions

wall
Liquid Flow

Liquid Flow
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Section

Heat Sink

Condenser
Section

Heat Source

wall
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Lc

Adiabatic
Section

a) Liquid-Vapor Interface

Vapor Flow
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Liquid Transport Factor vs Temperature
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• Convenient figure of merit is 
liquid transport factor, Nl,

Nl = latent heat * surface 
tension * density/ viscosity
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Heat Pipe Design Considerations
• Determine the operating temperature 

range.

• Select the working fluid 
– Liquid transport factor
– Never operate near the freezing 

temperature or the critical temperature 
of the working fluid.

• Select the container material.
– Material compatibility

• Select the wick.
– Material

• From the thermal requirement, determine 
the type of heat pipe.

– CCHP, VCHP, Diode HP

• From the heat transport requirement, 
determine the heat pipe diameter and 
length, and number of heat pipes.

– Temperature drop across the heat 
pipe

– Temperature gradient requirement
– Some computer models available
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Vapor
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Temperature T3

P3
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Pressure Drop Diagram of a Heat Pipe

• Heat Transport Limit

(QL)max = QLeff

Leff = 0.5 Le + La + 0.5 Lc
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b) Vapor and liquid pressure distributions

wall
Liquid Flow

Liquid Flow

Evaporator
Section

Heat Sink

Condenser
Section

Heat Source

wall

Le La
Lc

Adiabatic
Section

a) Liquid-Vapor Interface

Vapor Flow

• Capillary pressure head:

∆∆∆∆Pcap 1/r

• Liquid pressure drop:

∆∆∆∆Pliq 1/r2

∝

∝
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Capillary Pumped Loops
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Evaporator

Vapor
Bubble

Liquid
“Slug”
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Condenser
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Heat Out
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Vapor Plus
Liquid Wall

Film

Liquid In
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PredominateSurface Tension

Forces Predominate

Schematic of a Constant Conductance CPL
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Schematic of a Variable Conductance CPL 

WICK

EVAPORATOR VAPOR TRANSPORT LINE
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LIQUID RETURN LINE

SUBCOOLER
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Capillary Evaporator Pump

Heat

Vapor

Liquid
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Detail A
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Schematic of a CPL with Multiple Evaporators 
and Multiple Condensers

WICK

EVAPORATOR 1

VAPOR TRANSPORT LINE
CONDENSER 2

RESERVOIR

LIQUID RETURN LINE

SUBCOOLER

CONDENSER 1EVAPORATOR 2

ISOLATOR
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Schematic of CPL 1

Single Pump 
Evaporator 
Assembly
2 Places

Six Pump
Evaporator
Assembly

Isolator

Vapor Header

Liquid Return

Condenser Tubing Sub-cooled
Liquid Return

E2E1 E3   E4   E5   E6   E7   E8

C1         C2         C3         C4        C5         C6

Reservoir

Condenser
Heatsink

Sub-cooled
Heatsink

Reservoir
Connecting 

Line
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Schematic of HPSTM Demonstration System
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HPSTM Thermal Performance
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EOS-TERRA CPL Flow Schematic
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Two Evaporator Designs

P
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EOS - TERRA Spacecraft
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Capillary Pumped Heat Transport System in 
EOS-TERRA
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EOS-TERRA SWIR CPHTS Tubing Layout
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CPLs on TERRA (EOS-AM)

• Two-phase loops (CPLs) are on SWIR, TIR 
and MOPPIT instruments.

• Terra launched December 18, 1999.

• On the next day, the first CPL system in a 
flight mission was started successfully.

• All 3 CPLs continue to demonstrate 
reliable, stable thermal control for their 
instruments.

• More than 3 years of successful operation
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• July of 2001 -ASTER-SWIR cryo-coolers getting too hot. 
• CPL loop temperature was reduced by 4.5 0C in 3 steps

Reservoir and Instrument 
Interface temperatures
change as commanded
and then remain constant

Radiator and various line 
temperatures adjust 
according to new set 
points

TERRA - Temperature Reset with Stable 
Control for  the ASTER-SWIR Instrument
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External View of NCS and ASCS Systems in HST
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CPL on HST/SM-3B
STS-108, Feb/2002

NICMOS
CRYO

COOLER

NEON
LINES

CPL LINE TO
EXTERNAL RADIATOR

NICMOS
STIS

VENT
PORT

CPL EVAPORATOR

CPL was added to HST
Aft Shroud on SM-3B 

Astronauts fed CPL 
evaporator through bottom
of shroud, attached it to 
cryo-cooler, and attached 
new radiator to handrails.

CPL removes ~ 400 W heat 
from NICMOS cryocooler  
which allows the NICMOS
sensor to be reactivated. 

Tight temperature control
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HST ACS CPLs and ASCS Radiator Design

STRAIN RELIEF 
BRACKET WITH 
SURVIVAL HEATERS

ACS INTERFACE PLATE

ACS-1

ACS-2

STIS

COS

ACS-1

ACS-2

STISCOS

VAPOR LINES RELOCATED TO EDGE OF 
PANEL TO PREVENT LOSS OF SUCOOLER 
EFFICIENCY, REQUIRED ADDITIONAL 
VAPOR LINE HEATERS ON PANEL EDGE

LIQUID LINE 
SUBCOOLER 
AREA

EXTERNAL FLEX 
HOSES WITH 
FLEXIBLE SURVIVAL 
HEATERS

CONDUIT

RIGID LIQUID AND 
VAPOR LINE TUBING

CRYOVENT 
LIGHT SEAL

INTERNAL FLEX HOSE BUNDLE

EVAPORATOR PUMP 1

EVAPORATOR PUMP 2
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HST CPL/Radiator Assembly

Subcooler 
Section

Isothermalizer 
heat pipes

Heat Pipe Heat 
Exchangers

Reservoir Lines
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HST Servicing Mission 3B
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CAPL 3 SCHEMATIC
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CAPL3 Radiator Assembly (Upside Down)

Subcooler Radiator

Evaporators

Reservoir
Mounting 

Feet

Electrical Interface Bracket Condensers
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CAPL3 Flight Test Results
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Cryogenic CPL Applications

INDIVIDUALLY COOLED SENSORS

CRYOCOOLER

CRYOCOOLER CRYOCOOLER

SENSOR SENSOR

SENSOR

CENTRAL BANK OF 
CRYOCOOLERS

SENSOR
CRYO-CPL

THREE SENSORS,
12 CRYOCOOLERS

THREE SENSORS
2 TO 6 CRYOCOOLERS
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CCPL Flow Diagram

Condenser Spool

Cold 
Reservoir

Evaporator

Liquid Cooled Shield

Liquid Return Line
Reservoir Line

Vapor Line

Cooling Source

Hot Reservoir
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CCPL-5 Flight Unit

CCPL-5 Prior to 
LCS Attachment
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CCPL Flight Test Results

 11/5/98  CYCLE 6 
 START UP /  COLD SHROUD (150 K)

CONDENSER CONTROL / POWER CYCLING

70.00

75.00

80.00

85.00

90.00

95.00

100.00

105.00

110.00

4:19:12 4:48:00 5:16:48 5:45:36 6:14:24 6:43:12 7:12:00 7:40:48 8:09:36 8:38:24 9:07:12
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, 

K

PRT10 - CCPL Cond 2 - 400

PRT12 - CCPL Cold Resv 2 - 400
PRT14 - CCPL Pre-Evap - 400

PRT15 - CCPL Vapor Line - 400
PRT23 - CCPL Evap 2 - 400

6 W TO 
RESER.

0.5 W TO RESER.
1.0  W TO EVAP.

2.5 W TO 
COND.  84 K 
CONTROL 

1.7 W TO 
EVAP.

0.5 W TO 
EVAP 

RESET 
CONTROL 
TO 80 K

1.5 W TO 
RESER.

0.5 W TO 
RESER.
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CCPL Flight Test Results

11/5/1998  CYCLE 6  
 RESERVOIR CYCLING

 145 K  SHROUD
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PRT12 - CCPL Cold Resv 2 - 400

PRT14 - CCPL Pre-Evap - 400

PRT15 - CCPL Vapor Line - 400

PRT23 - CCPL Evap 2 - 400

COND CONTROL 
AT 70 K  1.5 W
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RES CONTROL AT 
80 K  2.45 W
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Neon CCPL Ground Test Results
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Loop Heat Pipes
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Schematic of an LHP

Compensation
Chamber

Vapor line

Secondary wick

Primary wick

Bayonet

Vapor Grooves

Section A-A

Arteries

Vapor grooves

Evaporator

Bayonet

Condenser

Liquid
line

A

A

Primary wick Secondary wick

• Main design features

• The CC forms an integral part of the evaporator.

• A primary wick with fine pore sizes provide the pumping force.

• A secondary wick connects the CC and evaporator, providing 
liquid supply.  
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Main Characteristics of LHP

• High pumping capability
– Metal wicks with 1 to 3 micron pores
– 35 kPa pressure head with ammonia (4 meters in one-G)

• Robust operation
– Secondary wick between CC and evaporator 
– Self start
– Vapor tolerant

• CC is plumbed in line with flow circulation
– Operating temperature depends on operating conditions.
– Thermodynamic constraints exist.
– Large external power may be required for temperature control.
– Loop shutdown 
– Limited growth potential

» Single evaporator most common
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LHP Operating Temperature

• The LHP operating temperature is governed by the CC temperature.

• The CC temperature is a function of
– Evaporator power
– Condenser sink temperature
– Ambient temperature
– Evaporator/CC design

• As the operating condition changes, the CC temperature will change 
during the transient, but eventually reaches a new steady temperature.

• The loop operating temperature can be controlled at a desired set point.

Net Evaporator Power

C
C

 T
em

pe
ra

tu
re

T1

T2

T3

T5

Q2 Q3 Q5

1

2

3

5

Condenser/Subcooler

V
ap

or
 L

in
e

Li
qu

id
 L

in
e

QSC
l

QC
l

QA
l

Transition Active Zone

QIN
l



8/22/03 Capillary Two-Phase Systems J. Ku

Energy Balance in LHP Operation
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Effect of Sink Temperature on CC Temperature

Net Evaporator Power
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LHP Operating Temperature Control

• Control LHP operating temperature by controlling the CC at a desired set 
point temperature.

• Heat the CC above its natural equilibrium temperature.
– Control is lost once condenser heat dissipating capability is 

exceeded.
– Control  may be lost at low heat loads.
– Overall conductance decreases.
– Power requirement depends on heat load and sink temperature.
– Alternate methods exist by heating the liquid line.

» Cross strap the vapor and liquid line
» VCHP 

• Cool the CC below its natural equilibrium temperature
– Practical only at low heat loads
– Use TEC or secondary evaporator.
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LHP Operating Temperature Control
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LHP Operating Temperature Control
NRL LHP
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LHP Development History

• 1985 U.S. Patent granted to Maidanik, et al.

• 1989 LHP flight experiment on GRANAT (Russia)

• 1993 Multiple evaporator LHP

• 1997 American LHP flight experiment (NASA)

• 1997 Russian LHP flight experiment (NASA/DOD)

• 1999 LHPs on  commercial satellites (Boeing)

• 2002 Cryogenic LHPs - nitrogen, hydrogen, neon  
(NASA/DOD)

• 2003 LHPs on ICESAT - GLAS (NASA)

• 2003 LHPs on COM2PLEX flight experiment (ESA)

• 2004 (planned) LHPs on on EOS - AURA (NASA)

• 2004 (planned) LHPs on GOES (NASA)

• 2004 (planned) LHPs on SWIFT - BAT (NASA)

• 2004 (planned) LHPs on AMS (NASA/ESA)

• 2004 (?) LHPs ground applications (US company)
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GLAS Laser and Component LHPs
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GLAS Laser Temperatures

GLAS Laser Transient Data 02/28/03 (Instrument fully powered)

25

27

29

31

33

35

37

39

D
A

T
E/

TI
M

E

20
03

/0
59

-1
5:

14
:5

7.
8

20
03

/0
59

-1
5:

29
:5

8.
8

20
03

/0
59

-1
5:

44
:5

7.
8

20
03

/0
59

-1
5:

59
:5

7.
8

20
03

/0
59

-1
6:

14
:5

7.
8

20
03

/0
59

-1
6:

29
:5

9.
8

20
03

/0
59

-1
6:

44
:5

8.
8

20
03

/0
59

-1
6:

59
:5

7.
8

20
03

/0
59

-1
7:

14
:5

7.
8

20
03

/0
59

-1
7:

29
:5

8.
8

20
03

/0
59

-1
7:

44
:5

7.
8

20
03

/0
59

-1
7:

59
:5

7.
8

20
03

/0
59

-1
8:

14
:5

7.
8

20
03

/0
59

-1
8:

29
:5

9.
8

20
03

/0
59

-1
8:

44
:5

8.
8

20
03

/0
59

-1
8:

59
:5

7.
8

20
03

/0
59

-1
9:

14
:5

7.
8

20
03

/0
59

-1
9:

29
:5

8.
8

20
03

/0
59

-1
9:

44
:5

7.
8

20
03

/0
59

-1
9:

59
:5

7.
8

20
03

/0
59

-2
0:

14
:5

6.
8

20
03

/0
59

-2
0:

29
:5

9.
8

20
03

/0
59

-2
0:

44
:5

8.
8

20
03

/0
59

-2
0:

59
:5

7.
8

20
03

/0
59

-2
1:

14
:5

7.
8

20
03

/0
59

-2
1:

29
:5

8.
8

20
03

/0
59

-2
1:

44
:5

7.
8

20
03

/0
59

-2
1:

59
:5

7.
8

20
03

/0
59

-2
2:

14
:5

7.
8

20
03

/0
59

-2
2:

29
:5

9.
8

20
03

/0
59

-2
2:

44
:5

8.
8

20
03

/0
59

-2
2:

59
:5

7.
8

20
03

/0
59

-2
3:

14
:5

7.
8

20
03

/0
59

-2
3:

29
:5

8.
8

20
03

/0
59

-2
3:

44
:5

7.
8

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

GLML1DBT GLML1ET GLML1OSCT GLML1REFT

• LLHP Active Control is finer than can be measured 
in the laser telemetry when the LHP is at full 110 W of 
power
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COM2PLEX Experiment Systems (ESA)
Onboard Space Shuttle Columbia 2/2003
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Multiple Single-Evaporator LHPs 

• Reasons to use multiple LHPs for the same heat source
– Increase the overall heat transport capability
– Increase system reliability with redundant loops
– Reduce temperature gradients of heat source 
– Alternative to an LHP with multiple evaporators

• Issues of multiple LHPs
– Some LHPs may not start and hence remain inactive over a range of 

heat load.
– LHPs may operate at different temperatures.
– Each LHP may carry a different heat load.
– Heat source temperature will vary with heat load distribution.  
– Temperature gradient on heat source may be higher than expected.

• Design implications
– Enough margin for heat transport
– Enough margin for temperature gradients
– Each LHP needs a temperature controller in order for them to operate 

at the desired temperature.
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Schematic of Multiple LHPs
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SWIFT BAT LHPs
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LHP Start-up

• LHP start-up is a complex phenomenon.

• LHP can self start by directly applying power to the evaporator without 
pre-conditioning.

• Self-start does not always imply instant or quick start.

• Start-up depends on initial conditions inside evaporator.
– Evaporator vapor grooves

» Liquid filled: superheat required for nucleate boiling
» Vapor presence: instant evaporation

– Evaporator liquid core
» Liquid filled: low heat leak, small temperature overshoot
» Vapor presence: high heat leak, large temperature overshoot

• A minimum power is required for start-up under certain conditions.

• Current practice is to use a starter heater to enhance start-up success. 
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LHP Shutdown

• Some instrument operation requires LHP to shutdown for a period of 
time.

• LHP can continue to pump fluid if the evaporator temperature is higher 
than the CC temperature.

• LHP can not be shut down by simply applying power to liquid line as in a 
CPL.

– Evaporator is vapor tolerant.

• Requirements for LHP shutdown
– No net heat load to evaporator
– CC temperature is higher than evaporator temperature

» Heating the CC is the only viable method

• Once the loop deprimes, fluid flow stops as long as there is no net heat 
load to evaporator. 
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LHP with Multiple Evaporators And
Multiple Condensers

• LHP with multiple evaporators and condensers
– Increased heat transport capability
– Reduced temperature gradients of heat source
– Multiple heat sources
– Heat load sharing among evaporators
– Multiple radiators
– Flexibility in design and operation

• Multiple condensers
– Flow regulators are desirable.
– May yield multiple temperature hystereses

» Flow regulators will not eliminate hystereses

• Multiple evaporator LHP configurations
– A common CC for all evaporators

» Limited capillary pressure head of secondary wicks
» Evaporators need to be close to one another

– Parallel evaporators, each has its own integral CC
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Multiple Evaporator LHP
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MELHP Test Set-up
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MELHP Power Cycle Test - Loop Temperatures
(C1/C2 Sinks at 273K/273K)

MELHP 9-21-2000
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MELHP Power Cycle Test - Loop Temperatures
(CC1/CC2 Control Set at 308K, C1/C2 Sinks at 263K/258K)

MELHP 10-5-2000
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Miniature Loop Heat Pipes

• Traditional LHP evaporators have 25.4mm diameter evaporators

• Evaporators with 13mm diameter have been made in last few years with 
excellent performance.

• Current goal is to develop evaporators with 6.35mm diameter.

• GSFC currently has three parallel development programs.
– Joint effort with Air Force Lab (AFRL) to test 2 mini-LHPs

manufactured by Russians - to be flown with CCQ Flight Experiment.
– SBIR 2 program with contract to TTH Research Inc. - completed 3/03.
– 3 year CETDP program started in 12/2000 - “ Miniature Heat Transport 

System for Spacecraft Thermal Control”  



8/22/03 Capillary Two-Phase Systems J. Ku

Mini LHP for CCQ Flight Experiment

• Made by Russians

• To be flown for CCQ Flight 
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CEDTP Miniature Loop Heat Pipes

• Miniature LHPs under the CETDP 
program.

– Breadboards built by Swales and 
Thermacore
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Ground Test Results of Thermacore miniLHP

Operating Temperature vs Power 
(New antifreeze, Evaporator above condenser by 0.25")
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Advanced LHP
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TTH Miniature LHP - SBIR 2
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Cryogenic LHPs

• Nitrogen LHP

• TTH/Thermacore - SBIR 2 (DOD)

• 75K-100K

• Hydrogen LHP

• TTH/Thermacore - SBIR 2 (NASA)

• 20-24K, 2.5W

• Neon LHP

• TTH/Thermacore -SBIR 1 (NASA)   

• 30K-35K, 4W

• Helium LHP

• Proposed for SBIR 2 (NASA)

• 4K, 0.5W
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Hydrogen LHP Test 
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Hydrogen LHP Test Results
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Summary
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Developments of Capillary Two-Phase Thermal 
Devices
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CPL Characteristics
(1 of 2)

• Pre-conditioning of the loop is required in order to flood the loop prior to 
start-up.

• CPLs can not tolerate vapor bubbles in the evaporator core; need
subcooling at all times.  

• Current polyethylene wick has limited pumping capability.
– Pore sizes around 20 microns
– 3500Pa pumping head using ammonia
– About 0.5 meter against gravity

• The reservoir provides very precise temperature control, regardless of 
heat load and sink temperature.

– Outside the path of fluid flow - saturation temperature is unaffected 
(little affected) by the loop operating condition.

– The “ master”  that controls the loop temperature.
– All transient are short-lived. 
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CPL Characteristics
(2 of 2)

• Power required to maintain reservoir temperature is small and 
independent of (insensitive to) the heat load.

• Reservoir can be located remotely from the evaporator.
– Design flexibility

• Loops with multiple evaporators and multiple condensers have been 
demonstrated.  

• Loops can be easily modified with reservoir re-sizing.
– Evaporators are interchangeable between loops.
– Transport lines and condensers can be changed.

• Loops are either functional or deprimed, no graceful degradation.
– Needs re-start once deprimed.
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LHP Characteristics
(I of 2)

• Loops are very vapor tolerant, and provide robust operation.

• Metal wicks with pore size of about 1 micron provides high pumping 
capability.

– 35KPa using ammonia
– Over 4 meters against gravity

• The CC temperature is a function of heat load, sink temperature, ambient 
temperature, and pressure drop.

– The CC is located along the path of the fluid flow).
– The CC is only a “ semi-master” .

• The vapor void fraction inside the evaporator is a key factor in
determining the loop operating temperature.

– A “ black box”   which can not be controlled by the operator.
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LHP Characteristics
(2 of 2)

• Temperature hysteresis has been observed in most existing loops. 

• The operating temperature can be controlled. The heater power is
dependent upon the heat load and sink temperature, and can be very 
large. 

• In heat load sharing mode of operation, the operating temperature will be 
higher than the ambient temperature regardless of heat load and the sink 
temperature.

• Loops provide graceful degradation instead of complete deprime.

• Each evaporator/CC is uniquely designed for a given loop.
– Usually not interchangeable among different loops
– Very limited design flexibility

• Loops with multiple evaporators have been demonstrated.  
– Two or three evaporators seem to be the limit.  
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Selecting a Capillary Two-Phase Thermal Design
1 of 2

• It is the thermal engineer’s responsibility to select the simplest and safest 
system that will suffice.

• Select traditional passive thermal designs if possible.

• Select CCHPs if possible.

• Selection of CPL or LHP may be compelling if not enabling.

• Certain mission-specific requirements may dictate the selection of CPL or 
LHP.

– Both CPL and LHP have tremendous design flexibility.

• Use LHPs if
– Temperature control is not too restrictive.
– Real estate is not an issue in the evaporator vicinity.
– Frequent start-up and shut-down during the mission Is expected.
– Significant thermal design is not expected as the project moves along.
– Large body forces are expected during the mission. 
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Selecting a Capillary Two-Phase Thermal Design
2 of 2

• Use CPLs if
– Infrequent start-up and shut-down are expected during mission 

operation.
– Very tight temperature control is required.
– Large uncertainties in thermal design exist in the early phases of 

project.
» Possible future growth of radiator size and/or transport line length
» Possible future growth in number of evaporators
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Analytical Modeling

• HP Models
– GAP for CCHPs
– VCHP
– SINDA/Fluint

• CPL Models
– SINDA
– SINSA/Fluint

• LHP Models
– Several institutions have developed steady state models.

» Based on concurrent pressure and energy balances at each 
element

» Spread sheet format
– LHP transient model

» Difficult due to complex physical processes
» Some models exist
» Utilize other thermal analyzers to provide boundary conditions
» SBIR 2 program on-going

• Dimensionless Groups
– Scaling
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Simplified LHP Thermal Network

0

,

=l

l

l

q
T

hm

cc

cc

cc

q
T

hm,

1

,

=eq
eT

ehm

1

,

=
≈
v

satv

v

q
TT
hm

0

,

=
=
c

satc

c

q
TT
hm

0

,

=sc

sc

sc

q
T

hm

→
avQ ,

ambT

sinkT

scQ ,↓

sinkT

sscQ ,↓

ambT

←

alQ ,

ambT

↑accQ ,
eQ

←

cceQ ,

Vapor LineLiquid Line

Compensation
Chamber

Evaporator

Inactive
Condenser
(Subcooler)

Active
Condenser


